Getting Started with Energy Security and DEPPM92-1

presented to

Energy 2005 Long Beach, CA 14-17Aug05

Eileen Westervelt, PE, CEM ERDC-CERL

Engineer Research and Development Center

Construction Engineering Research Laboratory

800 USA CERL x4494

Eileen.Westervelt@erdc.usace.army.mil

US Army Corps of Engineers

Engineer Research & Development Center

Overview

- Vocabulary
- Components of a Plan
- Approaches
- Resources

What is Installation Energy Security?

Sustainment of essential utility flows to meet key mission requirements when and where needed.

- Safe
- Resilient
- Reliable

Security Plan Methodology

- Vulnerability Analysis
- Emergency Response Plan
- Remedial Action Plan
- Implementation

Vulnerability Analysis: ID Mission Essential Utility Assets

Essential Tasks

(e.g.: training, deployment, home base support, health and safety)

Key Support Facilities

(e.g.: command, control, communications, information, water, sewage, medical care, force protection)

Key Utility Components

(e.g.: electrical substation, chilled water for cooling computers, power for sewage lift station)

Quantification and Prioritization of Loads

Reliability = %Uptime

Reliability	Down Time
90%	876 hrs/yr = 5.2 wks/yr
99%	88 hr/yr = 3.6 days/yr
99.5%	44 hrs/yr = 1.8 days/yr
99.9%	8.8 hrs/yr
99.95% (US electrical grid)	4.4 hrs/yr
99.99%	52.6 min/yr
99.999%	5.3 min/yr

Vulnerability Analysis: ID Potential Threat Scenarios

- Human Actions
 - E.g.: Terrorism/ Sabotage, Labor Strike, Error,
 Political Embargo, Cyber Attack
- Natural Occurrences
 - E.g.: Flood, Tornado, Ice Storm, Extreme Heat
- Technology Disturbance
 - E.g.: Mechanical or Electrical Failure

Vulnerability Analysis: ID Vulnerabilities

Dependencies with unacceptable consequences

Vulnerability Analysis: Consequence/Threat Mitigation

- Consequence Mitigation:
 - Manual Tasking
 - Movement or Consolidation of Activities
 - Alternate Fueling/ Fuel Storage
 - Ready Stocks
 - Redundant Generation/ Networked Generation/ Triage Load Shedding
 - Multiple Providers of Energy Resources and Equipment

Vulnerability Analysis: Consequence/Threat Mitigation

- Threat Mitigation
 - Physical Barriers
 - Access Control
 - Monitoring/ Detection Systems
 - Personnel /Visitor Background Checks
 - Intelligence Data

Vulnerability Analysis: Risk Assessment

- A combination of threats on dependencies with consequences yield security risks.
- Unacceptable risk must be remedied.

Consequence Mitigation Through Distributed Generation

- DG's Many Benefits:
 - is near point of use,
 - inside installation perimeter,
 - eliminates vulnerability of aging transmission infrastructure,
 - increases reliability and power quality,
 - can allow for fuel diversity, energy independence and reduced emissions.

CERL's Distributed Generation Integration Tool - DiGIT

- Technologies Assessed: Reciprocating Engines, Fuel Cells, Microturbines, Solar, Wind, Biomass
- Impacts Assessed: Energy, Cost, Emissions
- Implementation Trade Off Matrix
 - Security
 - Cost
 - Environmental Impact
 - Ease of Implementation
 - Acceptability/ Appeal

Emergency Response Plan

- Data Base of People and Equipment
- Definition of Roles and Responsibilities
- Procedures and Sequences of Actions
- Contingency Stock

Remedial Action Plan

- Necessary Actions and Rationale
- Contacts
- Cost/Benefit
- Schedule
- Milestones

Energy Security Plan Implementation

- Energy Security Planning Board
- Current Database
- Training
- Testing
- Annual Revision

Energy Security Plan Methodology

Vulnerability Analysis:

Mission Essential Utility Assets, Threats, Vulnerabilities, Consequence/Threat Mitigation, >>Risk

Emergency Response Plan:

Data Base of People and Equipment, Definition of Roles and Responsibilities, Procedures, Contingency Stock

Remedial Action Plan:

Necessary Actions, Contacts, Cost/Benefit, Schedule, Milestones

Implementation:

Energy Security Planning Board, Training, Testing, Revision

References

- DEPPM 92-1 Department of Defense Energy Security Policy, 14Jan92
- DODI 5160.54, Critical Asset Assurance Program (CAPP), 20Jan98
- Joint Antiterrorism Program Managers Guide (JAT Guide)
- AR420-49, Facilities Engineering Utility Services
- AR190-16, Physical Security, 31May91
- AR11-27, Energy Contingency Plans

Resources

- DEPPM-92.1 Checklist
- Energy Security Plan Template
 at SERO IMA website: http://www.pnl.gov/ima-seroenergy/reports/securityplans.stm
- Oak Ridge National Lab: www.ornl.gov
- Energy and Infrastructure Assurance Program Sandia National Lab: www.sanida.gov
- Risk Assessment Methodology for Water RAM-W SNL
- COE Power Reliability Reliability Enhancement Program (PREP), 249th Battalion (Prime Power): www.usace.army.mil

Resources (con't)

- Defense Threat Reduction Agency (DTRA) vulnerability assessments: <u>www.dtra.mil</u>
- DoD Assessment Office, Naval Surface Warfare Center (NSWC) Dahlgren Division – security audits: www.nswc.navy.mil
- Infrastructure Assurance Outreach Program –PNNL: www.pnl.gov
- Dynamic Utility Modeling (Ft. Future Utility Analysis Tools) - CERL: www.cecer.army.mil
- Distributed Generation Integration Tool CERL
- Eileen.Westervelt@erdc.usace.army.mil

